منابع مشابه
ATM meets ERK5
complexity of the living cell is supported by the multitasking activity of its protein constituents. The kinase Ataxia Telangiectasia Mutated (ATM) is a clear example. Not only does it orchestrate the DNA damage response but also sustains cellular homeostasis, including metabolism, control of oxidative stress, autophagy and apoptosis [1]. Given its prevalent role in the cellular response to var...
متن کاملAbsence of ERK5/MAPK7 delays tumorigenesis in Atm−/− mice
Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional rela...
متن کاملPhosphorylation of ERK5 on Thr732 Is Associated with ERK5 Nuclear Localization and ERK5-Dependent Transcription
Extracellular signal-regulated kinases (ERKs) play critical roles in numerous cellular processes, including proliferation and differentiation. ERK5 contains a kinase domain at the N-terminal, and the unique extended C-terminal includes multiple autophosphorylation sites that enhance ERK5-dependent transcription. However, the impact of phosphorylation at the various sites remain unclear. In this...
متن کاملMultifunctional role of Erk5 in multiple myeloma.
Multiple myeloma is characterized by the accumulation of terminally differentiated B cells in the bone marrow, due to increased proliferation and restricted apoptosis of the myelomatous clone. Here we have studied the participation of a novel mitogen-activated protein kinase (MAPK) route, the extracellular signal-regulated kinase 5 (Erk5) pathway, in the regulation of myeloma cell proliferation...
متن کاملERK5 Activation Is Essential for Osteoclast Differentiation
The MEK/ERK pathways are critical for controlling cell proliferation and differentiation. In this study, we show that the MEK5/ERK5 pathway participates in osteoclast differentiation. ERK5 was activated by M-CSF, which is one of the essential factors in osteoclast differentiation. Inhibition of MEK5 by BIX02189 or inhibition of ERK5 by XMD 8-92 blocked osteoclast differentiation. MEK5 knockdown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Aging
سال: 2017
ISSN: 1945-4589
DOI: 10.18632/aging.101189